Stability of an inverse problem for the discrete wave equation

نویسندگان

  • Lucie Baudouin
  • Sylvain Ervedoza
  • Axel Osses
چکیده

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterparts, include new terms depending on the discretization parameter h. From these stability results, we design a numerical method to compute convergent approximations of the continuous potential. Résumé A partir d’inégalités de Carleman pour des équations aux dérivées partielles dicrétisées elliptiques et hyperboliques, nous étudions la stabilité Lipschitz et logarithmique du problème inverse de détermination du potentiel dans une équation des ondes semi-discrétisée, par un schéma aux différences finies sur un maillage 2-d uniforme, à partir de mesures internes ou frontières. Quand ils sont comparés avec leur contrepartie continue, les résultats de stabilité dans le cadre discret contiennent de nouveaux termes dépendants du pas h du maillage utilisé. C’est à partir de ces résultats que nous décrivons une méthode numérique de calcul d’approximations convergentes du potentiel continu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

The stability of the solution of an inverse spectral problem with a singularity

‎This paper deals with the singular Sturm-Liouville expressions‎ ‎$ ‎ell y =‎ -‎y''+q(x)y=lambda y‎ ‎$‎ ‎on a finite interval‎, ‎where the potential function $q$ is real and‎ ‎has a singularity inside the interval‎. ‎Using the asymptotic estimates of a‎ ‎spectral fundamental system of solutions of Sturm-Liouville‎ ‎equation‎, ‎the asymptotic form of the solution of the‎ ‎equation (0.1) and the ...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Solving an Inverse Heat Conduction Problem by Spline Method

In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014